
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2020

 1 Instructor: Daniel Llamocca

Laboratory 3
(Due date: Oct. 12th)

OBJECTIVES
▪ Compile and execute multi-threaded C code in Ubuntu 12.04.4 using the Terasic DE2i-150 Development Kit.

▪ Learn multi-threading implementation using pthreads in C.

▪ Compare computation time of multi-threaded implementations using different number of threads.

REFERENCE MATERIAL

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides.

▪ Refer to the Tutorial: High-Performance Embedded Programming with the Intel® AtomTM platform → Tutorial 3 and 4 for

associated examples.

ACTIVITIES

FIRST ACTIVITY: CENTERED MOVING AVERAGE (WINDOW SIZE = 7)

▪ Given an n-element vector �⃗�, where 𝑎(𝑖) is an element of the vector (𝑖 = 0,1, … . , 𝑛 − 1), the elements of the 7-element

moving average 𝑓 are given by:

𝑓(𝑖) ←
𝑎(𝑖 − 3) + 𝑎(𝑖 − 2) + 𝑎(𝑖 − 1) + 𝑎(𝑖) + 𝑎(𝑖 + 1) + 𝑎(𝑖 + 2) + 𝑎(𝑖 + 3)

7

✓ The moving average is usually a central moving average that can be computed using data equally spaced on either side
of a central value (this needs the number of elements in the window to be odd).

✓ In the formula, 𝑖 = 0,1, … 𝑛 − 1. When the elements are not available (at the borders), we only use the available elements:

𝑓(0) ←
𝑎(𝑖) + 𝑎(𝑖 + 1) + 𝑎(𝑖 + 2) + 𝑎(𝑖 + 3)

4

𝑓(1) ←
𝑎(𝑖 − 1) + 𝑎(𝑖) + 𝑎(𝑖 + 1) + 𝑎(𝑖 + 2) + 𝑎(𝑖 + 3)

5

𝑓(2) ←
𝑎(𝑖 − 2) + 𝑎(𝑖 − 1) + 𝑎(𝑖) + 𝑎(𝑖 + 1) + 𝑎(𝑖 + 2) + 𝑎(𝑖 + 3)

6

𝑓(𝑛 − 1) ←
𝑎(𝑖 − 3) + 𝑎(𝑖 − 2) + 𝑎(𝑖 − 1) + 𝑎(𝑖)

4

𝑓(𝑛 − 2) ←
𝑎(𝑖 − 3) + 𝑎(𝑖 − 2) + 𝑎(𝑖 − 1) + 𝑎(𝑖) + 𝑎(𝑖 + 1)

5

𝑓(𝑛 − 3) ←
𝑎(𝑖 − 3) + 𝑎(𝑖 − 2) + 𝑎(𝑖 − 1) + 𝑎(𝑖) + 𝑎(𝑖 + 1) + 𝑎(𝑖 + 2)

6

▪ Fig. 1 depicts an example. The original data (102 data points) is plotted as a series of dots. The 7-element moving average

smooths short-term fluctuations and highlight longer-term trends.

Figure 1. Seven-element moving average

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2020

 2 Instructor: Daniel Llamocca

INSTRUCTIONS

▪ Write a .c program that reads in the parameter nthreads, reads the input data set from a binary input file (.bif), computes

the 7-element centered moving average and displays the result.

✓ Your code should measure the computation time (only the actual computation portion) in us.

▪ Considerations:

✓ Input dataset: 100,000 elements of type int32. This is available in the provided mydata.bif file.

 You can use this code snippet to read data from a binary file (use typ=1 since each element is of type int32).
int read_binfile (int *data, int Length, char *in_file, int typ) {

// data: array where the data read from file is placed

// type: type = 0: each element is unsigned 8-bit integer. ==> 'unsigned char'

// type = 1: each element is a signed integer (32 bits) ==> 'int'

// Length: # of elements to read (if type =1 --> number of 32-bit words)

 FILE *file_i;

 int i;

 size_t result, ELEM_SIZE;

 if (typ != 0 && typ != 1) { printf ("Wrong modifier (only 0, 1 accepted)\n"); return -1; }

 file_i = fopen(in_file,"rb");

 if (file_i == NULL) { printf ("Error opening file!\n"); return -1; }

 if (typ == 0) { // each element is an unsigned integer of 8 bits

 unsigned char *IM;

 IM = (unsigned char *) calloc (Length, sizeof(unsigned char));

 ELEM_SIZE = sizeof(unsigned char);

 result = fread (IM, sizeof(unsigned char), Length, file_i);

 for (i = 0; i < Length; i++) data[i] = (int) IM[i];

 free (IM); }

 else { // if (typ == 1) // each element is a signed 32-bit integer

 int *IM;

 IM = (int *) calloc (Length, sizeof(int));

 ELEM_SIZE = sizeof(int);

 result = fread (IM, sizeof(int), Length, file_i);

 for (i = 0; i < Length; i++) data[i] = IM[i];

 free (IM); }

 fclose (file_i);

 printf ("(read_binfile) Input binary file '%s': # of elements read = %ld\n", in_file, result);

 printf ("(read_binfile) Size of each element: %ld bytes\n", ELEM_SIZE);

 return 0;

}

✓ Strategy for parallelization: Given nthreads threads, the index 𝑖 represents each thread from 0 to nthreads-1.

 Each thread 𝑖 is in charge of processing a slice of the input vector in order to generate a slice of the output vector.

 The thread 𝑖 computes the slice of the output vector 𝑓 with the following indices:

 From ⌊
𝑖×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋ to ⌊

(𝑖+1)×𝑛

𝑛𝑡ℎ𝑟𝑒𝑎𝑑𝑠
⌋ − 1.

 Note that nthreads ∈ [1, 𝑛].

Figure 2. Seven-element moving average for the 100,000-element input dataset.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2020

 3 Instructor: Daniel Llamocca

▪ Verification: Fig. 2 depicts the input dataset along with the 7-element moving average.
✓ The dataset is relatively large, so to verify the correctness of your result, have your program print out the following

indices of output vector 𝑓:
 f(0:19), f(1000:1019), f(99980:99999)

✓ Fig. 3 shows a screenshot of the execution in the Terminal with the three 20-element sets of values.

▪ Compile the code and execute the application on the DE2i-150 Board. Complete Table I (use an average of 10 executions in

order to get the computation time for each case).
✓ Example: ./my_movavg 10

 It will compute the moving average of the input dataset using 10 threads.

TABLE I. COMPUTATION TIME (US) VS. NUMBER OF THREADS

nthreads

1 2 3 4 5 6 7 8 9 10

Computation

Time (us)

Figure 3. Execution of 7-element moving average showing three 20-element sets of values (the computation time corresponds to an execution

on a Dell Inspiron laptop)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2020

 4 Instructor: Daniel Llamocca

✓ Comment on your results in Table I. Is there an optimal number of threads? At what point increasing the number of
threads causes an increase in processing time?

▪ Take a screenshot of the software running in the Terminal for nthreads=5. It should show the computation time along with

the three 20-element sets of values for the output vector 𝑓 (like in Fig. 3).

▪ Provided file: mydata.bif.

SUBMISSION
▪ Demonstration: In this Lab 3, the requested screenshot of the software routine running in the Terminal suffices.

✓ If you prefer, you can request a virtual session (Webex) with the instructor and demo it (using a camera).

▪ Submit to Moodle (an assignment will be created):

✓ One .zip file
 1st Activity: The .zip file must contain the source files (.c, .h, Makefile), and the requested screenshot.

✓ The lab sheet (a PDF file) with the completed Table I and your comments

TA signature: __________________________________ Date: ______________________________

	Objectives
	Reference Material
	Activities
	First Activity: Centered Moving Average (Window Size = 7)

	Submission

